
1 AO-AOGI 529 TRACOR INC AUSTIN TX F/S 9/2
GPU CONTROLLER ODEVELOPICENT.Cu)

N NOV 79 R FPOSOICK, T CHAPMAN, R GUNN F33615-78C-1584

UNCLASSIFIED AFAL 79 79 -1180 N

m "momlomoo

,1'~~ -~'"Now",,

-cr..

GPU CONTROLLER DEVELOPMENT

R. FOSDICK
T CHAPMAN
R. G UAW

TRACOR PVC.
A USTIM, TEXAS 78 721

NOVEMBER 1979 OEETCS
TECHNICAL REPORT AFAL-,TR-1 180
Final Report for period August 1978 - June 1979B

Approwd for public relese; distribution tunlimited.

AMR FORCE AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTERM COMMAND

SWRIGHm4'ATTERSON AIR FORCE DA, OHIO 4M

8 314 0 6',.2

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Wen Date Entered) ,_,

REPORT DOCUMENTA.TION PAGE BEFORE COMPLETIC, FORM

GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

AFAL TR-79-118

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

GPU CONTROLLER DEVELOPMENT
FINAL, 78 AUG-79 JUNE
6. PERFORMING OIG. REPORT NUMBER

7. AUTHOR(s) a. CONTRACT OR GRANT NUMBER(.)

" ~R. FOSDIKT. CH{APMAN R.GN / F33615-78-C- 84 4
1.PERFORMING ORGAIiAN NAME AND ADDRESS 10, PROGRAM ELEMEN PROJECT. TASK

'.--' .T MAREA & WORK U rERTRACOR INC. P--

6500 TRACOR LANE
AUSTIN, TEXAS 78721

I. CONTROLLING OFFICE NAME AND ADDRESS 12 ,ORT DATE

AIR FORCE AVIONICS LABORATORY (y 2t Nov 79-7 !
AFAL/DHE- 3 P3.NUMBER F PAG]ES

WRIGHT PATTERSON AFB OH 45433 41
14. MONITORING AGENCY NAME & AOORESS(if different from Controlling Office) I5. SECURITY CLASS. (of Ih.8 report)

UNCLAS S IF lED
/ ' (I ISa. OECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIgUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17, ISTRIBUTIQ4 STATEMENT (ef th .sbtre t entered n Block 20, If different from Report)

S/

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on rerorse side If necessary end Identify by block number)

CMOS/SOS MICRO SEQUENCER INTEGRATED CIRCUIT
LSI CONTROLLER
GPU BIT-SLICE EMULATION

20 AOSTACT (Continue on ore.r side If neceseary and Identify by block number)

This report contains a description of the CMOS/SOS LSI circuit

designed under this program, and a functional comparison with the

AMD 2910; a similar micro-circuit.

DD 1473 EDITIONOF I NOVfISOoSOLETE UnclassifiedDD , '"'t Paierm eo ,r

. I' C5*W t.IIIV% II IIIIIIgpi '.d

PREFACE

This report was prepared by Tracor, Inc., Aerospace Group,

Austin, Texas, under Air Force Contract F33615-78-C-1584. The

contract is titled "GPU Controller Development". Work on this

contract was performed during the period August 1978 through June

1979. The report describes the operation and use of the circuit

designed under the contract. The effort was sponsored by the Air

Force Avionics Laboratory, Wright-Patterson AFB, Ohio -

Lieutenant Richard Jennings (AFAL/DHE) was contract monitor.

The report was submitted November 1979.

DTIC
S ELECTE

SMAR 17 M D
B

ACCESION for
IIS White Suct
D.C Bu Seft C3
VNOUNCMED 0
JUSTIFICATION

D

it. AVLaud/ or~ i

ii

TABLE OF CONTENTS

Section Page

I DESIGN PHILOSOPHY. 1

it CONTROL INSTRUCTION FORMATS. 7

1. Uniconditional. Branch Immediate 7

2. Unconditional Branch Immediate and Link. 7

3. MAP 7

4. Translate 8

5. Load. 9

6. Conditional Discrete Operations. 9

7. Count/Iterate. 9

8. Sub-Operations 10

III CONTROL DESCRIPTION 11

1. Microcommands. 13

a. Microcoinmand 0. 15

b. Microcommand 1 15

c. Microcommand 2.. 15

d. Microcommand 3 15

e. Microcommand 4. I

f. Microcommand 5. 21

g. Microcommand 6. 24

h. Microcommand 7. 25

IV CIRCUIT INTERFACE DESCRIPTIONS. 31

V APPLICATION 33

1. Unconditional Branch. 33

2. Branch and Link (BRL). 33
3. MAP. 33

4. Translate (XL)...................34 '

5. Load (LD). 34

6. Conditional Discrete (CD) 35

7. Count/Iterate (CNT, ITR). 35

8. Sub-Op Command (SUB) 36

VI CONTROLLER COMPARISON 38

1. Physical 38

2. Machine Instruction Interpretation. 39

3. Microcommand Sequencing 39

4. Related Functions 41

LIST OF TABLES

Table P age

I. Command 2 Subcommands. 17
II. Masking Operation Results For Microcommand 2 .. . 18

III. Translate Command Subcommands 19
IV. M-Controller Translate Instruction Lower Bits . .. 20

V. Load Command Subcommands 22
VI. Command 5 Options. 23

VII. Microcommand 6 Branch Options 26

VIII. Command 7 Sub-Operations 27

IX. Command 7 Branch Conditions

(No Discrete Operations Pending). 29

X. Command 7 Branch Conditions

(Discrete Operation Pending). 30

LIST OF ILLUSTRATIONS

Figure Page

1 GPU Micro-controller Unit (MCU) 12

2 Discrete Interface 14

vi

SECTION I

DESIGN PHILOSOPHY

The GPU controller is designed to contain all of

the functions required to implement the control section of a com-

puter. The current popular controller circuits, such as the AM

2910, mostly contain the macro address selection and storage por-

tion of a conventional architecture machine. The various deci-

sion, storage, and testing functions are implemented using MSI

and SSI circuits peculiar to the Instruction Set architecture.

A trade-off made early in the design of a computer

is execution speed versus micromemory size. Typically, the

faster the machine, the larger the micromemory. This rela-

tionship results from the desire not to waste time in linking the

common microcode. The cost of the speed is increased micromemory

due to extensive duplication in similar routines. Since the only

CMOS/SOS ROM available is a mask programmed 256 by 4 bit ROM

rather than the typical 1K by 4 bit field programmable bipolar

ROM, large micromemories are much more expensive in CMOS/SOS

systems than in bipolar computers.

The GPU controller with micromemory has been

designed to efficiently implement the entire control section of a

computer. The GPU controller has capabilities to support multiple

controller configurations, thus increasing speed and memory effi-

ciency.

An extensive set of masking and data manipulation

functions exist to provide for various combinations of external

inputs to be mapped to the micro address being generated. These

types of functions are required to extract specific operation

fields within macro-instructions, sub-operation codes, and

various combinations of status information. In a typical AMD

2910 implementation, these functions are hard-wired with addi-

tional circuitry, usually multiplexers.

L1

The GPU controller has twelve (12) Discrete Inputs

that the designer can use to connect various functions from other

elements within the architecture that directly effect the flow of

microcode. Examples of some of the signals that could be assigned

to the discrete inputs are as follows:

Sign of the ALU output

Overflow indication

Carry out

Indication of all zeros out of ALU

Completion of shift

Index register select equals zero

Completion of load or store multiple

Multiplier bits for sequential multiply operation

Changing sign of dividend and sign of divisor for

sequential divide operation

Interrupts

A four bit register loadable by four of the discrete inputs is

provided for machines requiring a Condition Code Register (CCR).

The GPU controller is the most efficient location for the CCR

when discrete inputs are used for deriving status information.

Means are also provided to load and store the contents of the CCR

for exchange status requirements.

The ALU sign and overflow inputs to the controller

are time multiplexed to contain the most significant shift input

or output when required for the rotate function. Therefore, two

pairs of discretes have the ability to pass data in either direc-

tion to complete the ALU circular shift macro-instruction.

The translate command uses the discrete inputs to

control the execution path. It offers the ability to select and

move machine status information based on data from the GPU (or

similar ALU) and other parts of the computer. Thus, status

information is moved into an appropriate position for efficient

2

micromemory address generation. The Discrete Inputs are orga-

nized as three (3) groups of four (4) bits each, and the CCR is

considered a fourth group. The translate command selects one of

the four groups and an immediate 4-bit mask identifies the speci-

fic bits within the group that are of interest. The masked bits

are then right justified and merged into the appropriate low bits

of the address pointer Forming the next micro address.

The same structure is used by the conditional

discrete setup command with the addition of a selected logical

operation" (AND, OR, XOR, XNOR) to be performed between the bits

identified by the mask. A large selection of operand pair options

are provided to minimize the number of set-up micro-instructions

required. The entire section of circuitry containing the Dis-

crete Inputs, Conditional Code Register, and their associated

control/commands would be implemented with extensive external

circuitry when using the AM 2910 or other similar controller cir-

cuits.

The GPU controller contains two (2) counters as

compared to one in the AM 2910. The two (2) counters can either

be selected to iterate (hold the same micro address until the

count is zero) or to sequence (continue normal code flow until
the count is zero). In both cases the exit addresses are set up

at the beginning and the testing/branching is done automatically.

With the two counters, counts can be nested. Nested counts occur

when one count is active and another count is pending. The dual

counter implementation allows entering and executing sections of

microcode without having to embed testing and exit commands,

thus, saving micromemory and execution time.

CONTROLLER FEATURES

o 10-BIT ADDRESS GENERATION (1024 WORDS)

o 8-BIT SHORT ADDRESS FORM (256 WORDS)

8 13-BIT COMMAND WORD (8 FORMATS)

o 8-BIT BUS INPUT

o 12 DISCRETES (3 SETS OF 4)

o SINGLE CLOCK

o EXTERNAL TRI-STATE CONTROL OF ADDRESS OUT

O 4-BIT REGISTER FOR ARITHMETIC STATUS

o TWO 8-BIT ITERATION COUNTERS

" COMPLETION OF GPU ROTATE SHIFT DATA PATHS

o FOUR COMMAND POINTER REGISTERS

o STORAGE REGISTERS FOR BUS INPUTS AND MASKS

o LOW OVERHEAD SUBROUTINE LINKAGE

4

COMMAND OPERATIONS

(MCU)

UNCONDITIONAL BRANCH IMMEDIATE

FIELD IN COMMAND TO MEMORY ADDRESS,

INCREMENTED, AND LOADED INTO SRN.

UNCONDITIONAL BRANCH IMMEDIATE & LINK

FIELD IN COMMAND TO MEMORY ADDRESS,

INCREMENTED. LOADED INTO NEXT REGISTER - NEW

SR. WHEN RETURN COUNTER IS LOADED PRIOR,

AUTOMATIC RETURN IS IMPLIED WHEN COUNT REACHES

ZERO.

MAP

MASKED TRANSFER OF FIELDS FROM BUS INPUT TO

MEMORY ADDRESS.

O TRANSLATE

MASK SELECTED DISCRETE INPUT(S) AND RIGHT

JUSTIFY THEM INTO MEMORY ADDRESS.

0 LOAD REGISTERS

MASK REGISTERS, ITERATION COUNT, COMMAND

POINTER, ETC.

r

O CONDITIONAL DISCRETE OPERATIONS

MAP OR 'tONDITION BRANCF01SKIP ON VALUES OF

DISCRETES OR OP[kATINS BETWEEN DISCRETES

(XOR,OR,AND,ADD).

B

O COUNT

A. ITE-aTION - COUNT IN COUNTER - MAINTAIN

SAME MEMORY ADDRESS UNTIL COUNT IS ZERO.

5

B. SEQUENCE - AUTOMATIC SEOUENTIAL ADDRESS

OF NEXT N LOCATIONS (STOPS WHEN COUNT IS

ZERO).

SUB-OPERATIONS

ASR CONTROL, DISCRETE SWITCH, LOAD BUS INPUT,

DISCRETE I/0 MASK CONTROL, RETURN, ETC.

6

SECTION II

CONTROL INSTRUCTION FORMATS

1. UNCONDITIONAL BRANCH IMMEDIATE

10 0 o0 x

MFO

X = Immediate Address

OPERATION:

X -MAO (Memory Address Out)

(MAO) + 1 +SR (N) (Stack Register)

2. UNCONDITIONAL BRANCH IMMEDIATE & LINK

0 0 1t x

MFO

X = Immediate Address

OPERATION:

X -* MAO

(MAO) + 1 SR(N+I) (New Stack

Register)

3. MAP

10 1 0 P C M

MFO

P = Page bits (not required if Memory is 256 words

or smaller)
7

C = Control

M = Immediate MASK

OPERATION:

C: MF4 - Selection of BusIN (3-0)/R3

(3-0) for lower character source
MF5 - Selection of Bus IN (7-4)/R3

(7-4) for upper character source
MF6 - (OR) mask with upper character/

(AND) mask with lower character
MF7 - Both selected character out -

masking operation specified

by MF6/ character defined by

MF6 as lower character source

masked by m - upper character

supplied by R2 (7-4)

4. TRANSLATE

f0 1 I P f C M

MFO

P = Page bits

C = Control

M = Immediate MASK

OPERATION:

P MAO (9-8)

C: MF4, MF5 - Input set selection

(D (3-0)/D (7-4)/D (ll-8)/CCR)
MF6 - No Register Reference/Register

Reference

MF7 - If Register Reference, MASK/BIAS
Automatic Mask Selection of Input set selected

Insertion of Discretes selected, right

Justified, into SR(N).

5. LOAD _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 0 0 PI A

P =Page Bits

A -Register Selection

M =Immediate Data

OPERATION:

P,SR(N)-* MAO 9-0

MAO (7-0) +, SR(N)

M -). (Register) A

6. CONDITIONAL DISCRETE OPERATIONS

1i 0 1I P I c M

MFO

P -Page Bits (for next address)

C -Control & Selection

M -Immediate Mask

OPERATION:

C: MF5, MF4 - Input Set Selection

(D(3-0)/D(7-4),/D(1l-8)/CCR)

MF7, MF6 - Operation on masked inputs

(OR, AND, XOR, XNOR)

P, SR(N) -~ MAO (9-0)

MAO (7-0) + 1-, SR(N)

7. COUNT/ITERATE

1l 1 O0 P C I M

P Page Bits

9

C = Control

M = Immediate Count

OPERATION:

C: MF7 - Iteration (same

address)/Sequent ial

MF (4-6) - Address Sources (Same as

True Condition Branch

Options of Micro-

command 7

If Iterate, bits 4-6 specify the location of the

instruction to be iterated. At the conclusion of

the iteration, execution follows the normal path

specified by the instruction that was iterated.

If sequential, the branch conditions specified by

bits 4-6 are stored and a count is started. The

next microlocation is the next micro-address.

Execution continues in a normal fashion until the

count runs out. The previously stored branch con-

ditions then control the next address.

8. SUB-OPERATIONS

SI ''I I I C S I

MFO

P = Page Bits

C = Next Address

S - Suboperation

10

SECTION III

CONTROL DESCRIPTION

The GPU Micro-Controller (MCU) is shown in figure

1. MCU operations are determined by the micro field and synchro-

nized by the clock. The MCU receives data from the bus input and

the discrete I/O interface. The MCU generates a micromemory

address output and certain discrete outputs.

The four stack registers (SR3-SRO) allow linkages

between various microsubroutines. The currently active stack re-

gister points to the next micromemory location to be executed.

The MCU can go to a microsubroutine by pushing the stack and re-

turn from a subroutine by popping the stack. If too many levels

of subroutine are called, the stack wraps around and the oldest

stack register is overwritten with the new stack value. A 2-bit

Stack Pointer (SP) which wraps in each direction keeps track of

which SR is the currently used register.

The five Operations Registers (R4-R0) are dedi-

cated to specific functions such as masking, mapping or saving

common re-entry points. RO and Rl are pointers to re-entry points

that can be given control directly or conditionally. R2 is a pair

of 4-bit mapping registers that can be used to transfer execution

to one of 16 micromemory locations, depending on other con-

ditions. R4 is an address masking register. R3 is maskable

address register that can be loaded from microcode or from the

external bus.

The dual timer is a pair of 8-bit counters that

can be set up as inner and outer loop timers. Each timer is set

up with a count and set of branch conditions to be executed when

the count runs out. Once started, a counter counts micro-cycles

until terminated, pushed, or finished. The outer loop counter is

suspended (pushed) by activation of the inner loop counter. When

the inner loop counter runs out, the outer loop counter starts

counting on the count at which it was pushed.

11

i

MICROFIELD 12-0 BUS INPUT 7-0

(ONLY GOES TO R3)

DECODE

INCREMENTER GEAORSDCRT

MEMORY ADDRESS DI DID DIO
OUT-9-0 11-8 7-4 3-0

Figure 1. Cpu Micro-controller Unit (MGU)

12

-- ORONO

The discrete interface is shown in figure 2. 1)7-DO
are bi-directional signal pins while DI1-D8 are unidirectional

inputs. DII-D8 have a 4-bit register associated with them. The
register bits indicate whether DII-D8 are accepted in true or

complement form.

The lower four discrete bits (D3-DO) are arranged

for connecting the upper and lower shift bits of the GPUs (MXH1-

0) and (MXLL-0). Under micro-code control, DO connects to D2 and

D1 connect'g to D3, or D2 connects to DO and D3 connects to D1, or

DI ex-or DO connects to D2. These pins hold the last data placed

on them and this data may be read by the MCU or GPU.

The middle four discrete bits (D7-D4) are pri-

marily used for storing and retrieving status bits. The Condi-

tion Code Register (CCR3-CCRO) can be output via D7-D4 or can be

loaded via D7-D4. Alternatively, CCR3-O can be loaded from com-

binations of (DII, DIO, D1,DO).

1. Microcommands

The controller microcommand is a 13-bit number

that car be broken into 4 fields. The upper three bits (MF12

-MFlO) comprise a microcommand. The next two bits (MF9-MF8) are

page bits that are passed through the controller chip except

during system reset, when they are forced to zero, and "same

address", when the previous value is used. (The page bits are

used in systems having micromemory in excess of 256 words).

The next 4-bit field (MF7-MF4) is either a branch

address or a subcommand. The final 4-bit field (MF3-MFO) can he

a branch address, a mask, or data to be loaded into a register

half or counter half.

13

LOGIC ARRAY DISCRETE SELECT

A L+ t t

MASK SELECT T A

A
14 4

MAK SE T A

AKSL~ 4U c CSELECT

MICRO_ _ _ _ _ _

21!t 2
A A A •A

H

F Ir E L O
i ,1

3-0

LATCH AA

TRUE /COMPLE MENT GATING 13US PLTE U SLITR

:1 01 or 31 010 00DID :1 XOoO 010 010 ~10Ii t 0 9 a 7 6 5 4 3 2 1 0

MICROCONTROLLER DISCRETE INTERFACE SECTION

FIGURE 2

14

a. Microcommand 0 - (MF12-MFIO - 000) is an uncon-

ditional branch. The lower 10 bits (MF9-MFO) are the address of

the next micro instruction. The lower 8-bit portion of the

microcommand is incremented and loaded into the currently active

Stack Register (SR).

b. Microcommand 1 - Microcommand I is the branch and

link command. The lower 10 bits are the next address as in com-

mand 0. However, the stack pointer is incremented prior to

loading the incremented lower 8-bit portion of the microcommand

into a stack register. The normal effect of a branch and link

command is to leave the previously active SR pointing to the

location in micromemory just past the branch and link command.

Execution then progresses using the new SR until a return is exe-

cuted. A return causes the controller to pick the next address

from the previously active SR.

c. Microcommand 2 - Microcommand 2 is the map com-

mand. The lower 4-bits (MF3-MFO) are a mask and the second 4-

bits (MF7-MF4) are sub-commands. The next micromemory address is

determined as in Table I. Any bits needed for the lower 4-bits

of the micro-address that are not supplied by the masking opera-

tion are zeros. Table II shows an example of the masking opera-

tion for various mask values. The lower 8-bit portion of the

address is incremented and loaded into the currently active SR.

d. Microcommand 3 - Microcommand 3 is the translate

command. Bits 3-0 form a mask and Bits 7-4 comprise a subcommand

field.

In the subcommands, Bits 5 & 4 select one of the 3

sets of discrete inputs or the Condition Code Register (CCR).

Bits 7 & 6 select one of four masking operations The sixteen

possible operations are delineated in table III.

15

Ul
In table III SRN is the current Stack Register and

the notation "SRN 3-x" indicates that bits are brought down from

SRN to fill the slots not filled by the masking operation. An

example of the mask and right justify operation is given in table

IV.

In subcommands 4-8 and C-F, the stack register is

not updated. This feature allows a routine such as multiply or

divide to be set up in which the controller is continuously

translating until interrupted by one of the timers running out.

Otherwise, the lower 8-bit portion of the address is incremented

and loaded into the currently active SR.

16

TABLE I

COMMAND 2 SUBCOMMANDS

M-MASK-MF3 -MF0

MICROCOMMAND NEXT MICRO NEXT MICRO

MF7-MF4 ADDRESS BITS 7-4 ADDRESS BITS 3-0

0 0000 Bus In 7-4 VM Bus In 3-0

1 0001 Bus In 7-4 VM R3 3-0

2 0010 R3 7-4 VM Bus In 3-0

3 0011 R3 7-4 VM R3 3-0

4 0100 Bus In 7-4 (Bus 3-0 M) RJ

5 0101 Bus In 7-4 (R3 3-0 M) RJ

6 0110 R3 7-4 (Bus In 3-0 M) RJ

7 0111 R3 7-4 (R3 3-0 M) RJ

8 1000 R2 3-0 (Bus In 3-0 M) RJ

9 1001 R2 3-0 (R3 3-0 M) RJ

A 1010 R2 3-0 (Bus In 7-4 M) RJ

B 1011 R2 3-0 (R3 7-4 M) Ri

C 1100 R2 7-4 (Bus In 3-0 M) RJ

D 1101 R2 7-4 (R3 3-0 M) RJ

E 1110 R2 7-4 (Bus In 7-4 M) RJ

F 111 R2 7-4 (R3 7-4 M) RJ

RJ = RIGHT JUSTIFY

V = OR

A = AND

17

L.

TABLE I I

MASKING OPERATION RESULTS FOR MICROGOMMAND 2

MASK BIT 4-0 BIT 4-1

0 0 0

1 000B0 (Bus In Bit 0) 000R30

2 000B 1 000R31
3 00BIB 0 00R3 1R30
4 000B2 00OR32
5 00B2 B0 00R32 R30
6 00B2B1 00R32 R31
7 0B2 BjB0 0R32R31R30
8 000B3 000R33
9 00B3 f30 0OR33 RO
A OOB3 Bj 00R33R31

B B3BIB 0 0R33R3jR30
C 00B3 B2 00R33R32
D 083 BlB0 0R33R31R30
E 0B3B2Bj 0R33R32R31
F B3B2BIB 0 R33 R32R31 R30

18

TABLE IlI

TRANSLATE COMMAND SUBCOMMANDS

Next Micro Address Out

B7-4 MAO 7-4 MAO 3-0

0 0000 SRN 7 _4 VOOOO SRN 3 _x,(D 3. 0 AM) RJ

1 0001 SRN 7 _4 VOOO SRN 3 _x,(D 7 _4 AM) RJ

2 0010 SRN 7 _4 VOOO SRN 3 _×,(DII- 8 AM) RJ

3 0011 SRN7_ 4 VOOO SRN3 _x,(CCR 3 _0 AM) RJ

4 0100 SRN7_ 4 V M SRN 3 -x,(D 3 _0 AR4 3 _0) RJ

5 0101 SRN 7 _4 V M SRN 3.x,(D 7 _4 AR43. 0) RJ

6 0110 SRN7_ 4 V M SRN 3 _x,(DI_ 8 AR4 3 _0) RJ

7 0111 SRN 7 _4 V M SRN 3.x,(CCR 3 0 AR4 3 _0) RJ

8 1000 SRN 7 _4 V0001 SRN3 -x,(D 3 _0 AM) RJ

9 1001 SRN 7 _4 V0001 SRN3 x,(D 7 _4 AM) RJ

A 1010 SRN7T 4 VO001 SRN3 _x,(DII_ 8 AM) RJ

B 1011 SRN 7 _4 VO001 SRN 3 -x,(CCR3 -0 AM) RJ

C 1100 SRN 7 _4 V R4 7 -4 SRN 3 _x,(D 3 _0 AM) RJ

D 1101 SRN 7 -4 V R4 7 -4 SRN 3 _x,(D 7 _4 AM) RJ

E 1110 SRN 7 _4 V R4 7 -4 SRN 3 _x,(DII_ 8 AM) RJ

F 1111 SRN 7 _4 V R4 7 -4 SRN 3 -x,(CCR3 0 .AM) RJ

The current Stack Register (SRN 7 _0) is updated for

sub-ops 0-3 and 8-B, but is unchanged for sub-ops 4-7 and C-F.

19

TABLE IV

M-CONTROLLER TRANSLATE INSTRUCTION LOWER BITS

MASK RESULT

o R3 R2 RjR0 R3 -0 is the current Stack

IR 3R2 RjD0 Register (SRN)

2 R3 R2RlDl

3 R3R20D 0

-4 R3 R-RlD2

5 R3 R2D2D0
6 R3 R2D2Dl

7 R3 D2DjD0

8 R3 R2R3 D0
9 R3R3 DjD0

A R3R2D3 Dl

B R3 D3 DjD 0

C R3R.2D3D 2

D R3 D3 D2D0

E R3 D3 D2Dl

F D3 D2 DjD0

20

e. Microcommand 4 - Microcommand 4 is the load com-

mand. This instruction allows the lower 4-bits of the command

MF3-MFO to be loaded into one of 16 half registers. The next

micromemory address comes from the current SR. The current SR is

then incremented. Table V is a list of the destination

addresses.

f. Microcommand 5 - Microcommand 5 is the conditional

discrete setup command. MF5-MF4 select one of four sets of four

signals from the discrete interface section to be examined. MF3-

MFO is a mask that selects which of the four signals selected by

MF5-MF4 are to be examined by the controller. MF7-MF6 select the

logical operation to be performed on the selected inputs. If the

mask is zero, the current CCR is used as a mask. MF7-MF4 and the

mask are latched for later use. Table VI lists the microcommand

5 options.

Once a command 5 has set up a discrete operation,

the cesult of the prescribed logical function is sampled during

subsequent operations until a command 7 is executed. During com-

mand 7, the MCU examines the latest discrete operation result,
and branches based on a portion of the command 7 code. Unless

the resulting branch directs the MCU to repeat the instruction

(i.e. branch to the same address) the discrete operation is can-

celled at the start of the next instruction. If no discrete

operation is pending, then command 7 takes the "true" branch.

Due to data path conflicts, the discrete operation

result is not sampled during command 3 or during most of the com-

mand 7 subcommands. The F subcommand of command 7 allows discrete

result sampling and immediate branching on the sampled result.

21

TABLE V

LOAD COMMAND SUBCOMMANDS

MICROCOMMAND DESTINATION OF

MF7-MF4 MF3-MFO

0 RO lower

1 RO upper

2 Ri lower

3 Rl upper

4 R2 lower

5 R2 upper

6 R3 lower

7 R3 upper

8 R4 lower

9 R4 upper

A True/complement Mask for Discrete

* 11-B
B Condition Code Register (CCR3-

CCRO)

C Outer Timer Register lower holding

register (TB3-TBO)

D Outer Timer Register upper holding

register (TB7-TB4)

E Inner Timer Register lower holding

register (TA3-TAO)

Inner Timer Register upper holding

register (TA7-TA4)

* 0 =) True

1 =) Complemented

22

TABLE VI

COMMAND 5 OPTIONS

MF7-MF6 MF5-MF4

0 00 OR Discrete 3-0

1 01 AND Discrete 7-4

2 10 XOR Discrete 11-8

3 11 XNOR CCR 3-0

MASK RESULT IF MF7-MF4 = 000

0000

0001 DI0

0010 DI1

0011 DI1 V DI0

0100 D12
0101 D12 V DI0

0110 D12 V DI1

0111 D12 V DI1 V DI0

1000 D13

1001 D13 V DI0

1010 D13 V DI1

1011 D13 V DI1 VDI0

1100 D13 V D12
1101 D13 V D12 V DI0

1110 D13 V 012 V DI1

1111 D13 V D12 V DI1 V DI0

• Operation depends on the CCR when the command 5 was executed.

DI = Discrete Interface

23

g. Microcommand 6 - Microcommand 6 is the immediate

count instruction. Command 6 has two subcommands determined by

MF7. If MF7 is a zero, a sequential count is initiated: if MF7

is a one, an iteration count is initiated.

In a sequential count subcommand, a count of I to

16, determined by MF3-MFO, is loaded into the outer counter
unless the outer counter is active, in which case it is loaded

into the inner counter and branch conditions determined by MF6-

MF4 are loaded into the branch register for that counter.

Execution then continues in normal sequence (i.e.

starting at the location following the sequential count subcom-

mand and continuing as prescribed by the subsequent instructions)

until the count runs out. When the count equals zero a flag is

set and the next instruction is determined by the branch instruc-

tions that were set up in the sequential count subcommand.

In an iteration count subcommand, the count deter-

mined by MF3-MFO is also loaded into an available counter.

However, the branch condition determined by MF6-MF4 is taken

immediately. The instruction that results from the branch is

then repeated until the count runs Out. Execution then continues

sequentially from the instruction that was repeated.

The protocol between the inner and outer counter

is such that it is not possible for the inner counter to be

active unless the outer loop counter has a count sequence

pending. Attempting to initiate a third count while the inner

counter is activated is an error which will cause the GPU

controller to shut off both counters and take the branch con-

ditions associated with the outer counter.

24

The command 6 branch options are illustrated in

Table VII. In the RI branch option, the contents of RI provides

the next memory address ((RI) MA out). The memory address out

is then incremented and the result is loaded into the currently

active Stack Register (MA out + 1 SRn). In the MAP option,

memory address bits 7 through 1 are provided by the currently

active Stack Register. Memory Address bit 0 is the Exclusive-OR

of discrete inputs DO and DI. In the return option, the stack

pointer is decremented (popped) and the memory address is pro-

vided with the content of the newly activated Stack Register.

Execution continues using the newly activated Stack Register. In

the link option, the stack is pushed by incrementing the stack

pointer after having output a memory address from the currently

active Stack Register. Link is used to go to a microsubroutine

while Return is used to return from a microsubroutine. Finally,

Return and Link are used to return momentarily from a subroutine

and go immediately back to the beginning of the subroutine, thus

saving microcode when a subroutine must be executed multiple

times.

h. Microcommand 7 - Microcommand 7 is the sub op and

branch command. MF3-MFO determine one of 16 discrete and timer

operations. MF7-MF4 determine the next address.

The discrete and timer sub-operations are outlined

in Table VIII. Sub ops 0-3 are different methods of loading the

condition code register (CCR). Except for CCR1 in sub op 2 the

CCR is loaded with the selected information during clock phase 2.

In sub op 2, CCRI is set during phase 2 if DI DO is a logical

one; however, CCRI is not reset if D1, W DIO is a Logical zero.

Sub op 8 causes the currently active counter to

start over from the count in its holding register. If no counter

25

TABLE VII

MICROCOMMAND 6

BRANCH OPTIONS

MF6-MF4 BRANCH CONDITION DESCRIPTION

0 Ri Branch (RI)- MAout; MAout + i- SRn

I Next Address (SRn)- MAout; MAout + I-SRn

2 MAP SRn(bits 7-1), DO-V-DI MAout,

SRn unchanged

3 Return (n)-l n, (SRn)- MAout:

MAout + 1, SRn

4 Ri Branch and (RI), MAout, (n)+l- n;

Link MAout + I- SRn

5 RO Branch (RO)- MAout; MAout + i- SRn

6 Link (SRn)- MAout: (n) + I n,

MAout + I- SRn

7 Return and Link (nW-1,n, SRn-MAout: (n)+i n
MAout+l - SRn

MAout = Memory Address out.

SRn = Stack Register pointed to by Lhe Stack

Pointer ,n.

(RI) = The content of Register 1.

-- XOR

26

TABLE VIII

COMMAND 7 SUB OPERATIONS

MF 3-0. OPERAT ION

0 Dl1,DlO,D1,DO CCR3-CCRO

1 D11,D1O,D1,Dl DO CCR3-CCRO

2 D1I,DLO,(D1 V DO) V CCR2, D)O- CCR3-CCRO (see Text)

3 D7-D4- CCR3-CCRO

4 Output CCR3-CCRO- D7-D4

5 Output DI V DO-~ D2

6 Output D3,D2-~ D1, DO

7 Output DO-~ D3

8 Reload Sequential Count (see text)

9 Enable Sequential Count (see text)

A NO-Operation

B Bus In 7-0- R3

C Stop all counts

D Enable Iteration Count (see text)

E Stop Current Count

F Sample Discrete Operation (set up by command 5)

V = XOR

V = OR

27

is active, the outer loop counter is started. The branch con-

ditions to be used by the counter are determined by MF7-MF4 as in

Table IX. Unlike most of the other command 7 sub ops, sub op 8

causes the MCU to proceed to the following micromemory address.

Should an active counter run out while a sub op 8 is being exe-

cuted the result is the same as attempting to initialize a third

counting register, i.e. all counters are disabled and the outer

loop branch conditions are taken.

Sub op 9 initiates a sequential count as in com-

mand 6, except that the count comes from the holding register.

The next address and count run-out results are as in sub op 8,

above.

Sub op C stops all counters and does not branch on

the stored counter branch conditions.

Sub op D enables an iteration count as in command

6, except that the count comes from the holding register for the

activated counter.

Sub op E cancels the currently active counter
without taking the branch associated with that counter.

Sub op F samples the discrete operation set up by

command 5.

Table IX shows the branch conditions taken by sub
ops other than sub ops 8 and 9 when no discrete operation is

pending. The meaning of the branch conditions are the same as

those in Table VII.

Table X shows the branch conditions taken by sub

ops other than sub ops 8 and 9 when a discrete operation is

pending. The discrete operation is not sampled during a command

7 sub ops O-E or a command 3 (translate).

28

A

II TABLE IX

COMMAND 7 BRANCH CONDITIONS
(NO DISCRETE OPERATION PENDING)

MF 7-4 BRANCH

0 RI Branch

I Next Address

2 MAP

3 Return

4 Ri Branch and Link

5 RO Branch
6 Link

7 Return and Link

8 Ri Branch

9 Next Address
A Same Address

B Return

C RI Branch
D RO Branch

E Return

F Return and Link

Exception: If sub op 8 or 9, ignore MF7-4 and take next address.

29

TABLE X

COMMAND 7 BRANCH CONDITIONS

(DISCRETE OPERATION PENDING)

MF7-MF4 CONDITION TRUE CONDITION FALSE

0 Ri Branch Next Address

1 Next Address Same Address

2 MAP Next Address

3 Return Next Address

4 Ri Branch & Link Next Address

5 RO Branch Next Address

6 Link Next Address

7 Return & Link Next Address

8 Ri Branch RO Branch

9 Next Address Return & Link

A Same Address Next Address

B Return Ri Branch & Link

C RI Branch Same Address

D RO Branch Return & Link

E Return Same Address

F Return & Link MAP

Exception: If sub op 8 or 9, ignore MF7-4 and take next address.

30

30

SECTION IV

CIRCUIT INTERFACE DESCRIPTIONS

LABEL DESCRIPTION ASSIGNMENT

MF0 Control Word Input - Bit 0

MF1 Control Word Input - Bitl

MF2 Control Word Input - Bit 2

MF3 Control Word Input - Bit 3

MF4 Control Word Input - Bit 4

MF5 Control Word Input - Bit 5

MF6 Control Word Input - Bit 6

MF 6 Control Word Input - Bit 7

MF8 Control Word Input - Bit 8

MF9 Control Word Input - Bit 9

MF1 0 Control Word Input - Bit1 0

MF 91 Control Word Input - Bit1 1

MF 10 Control Word Input - Bit 1 2

B10 Bus Input - Bit0

B11 Bus Input - Bitl

B12 Bus Input - Bit 2

B13 Bus Input - Bit 3

B14 Bus Input - Bit 4

BI5 Bus Input - Bit 5

B16 Bus Input - Bit 6

B17 Bus Input - Bit 7

D10 0 Discrete Input/Output - Bit 0

D10 1 Discrete Input/Output - Bit1

D10 2 Discrete Input/Output - Bit 2

DI0 3 Discrete Input/Output - Bit 3

31

LABEL DESCRIPTION ASSIGNMENT

DI0 4 Discrete Input/Output - Bit 4

D10 5 Discrete Input/Output - Bit 5

D10 6 Discrete Input/Output - Bit 6

D10 7 Discrete Input/Output - Bit 7

D18 Discrete Input - Bit 8

D19 Discrete Input - Bit 9

DI10 Discrete Input - BitlO

Dill Discrete Input - Bit1l

CLK Input Clock

V Positive Voltage

GND Ground

TSC Tri-State Control

RST Input Reset

MAO0 Memory Address Output - Bit 0

MAO1 Memory Address Output - Bit1

MA0 2 Memory Address Output - Bit 2

MAO 3 Memory Address Output - Bit 3

MA04 Memory Address Output - Bit 4

MA0 5 Memory Address Output - Bit 5

MA06 Memory Address Output - Bit 6

MAO 7 Memory Address Output - Bit 7

MA0 8 Memory Address Output - Bit 8

MA09 Memory Address Output - Bit 9

32

SECTION V

APPLICATION

The eight instruction formats of this controller

are solutions to various control requirements. Following is a

discussion of the use of each instruction type.

1. Unconditional Branch

The unconditional branch is the normal mode for

the transfer of program control to a predetermined address in

micromemory, other than the next sequential address, with no

interest in returning to the present location. This instruction

is conventional in most controllers.

2. Branch and Link (BRL)

BRL is the controller method of providing for a

subroutine "CALL". In addition to performing an unconditional

branch, BRL saves the return address (address of the BRL instruc-

tion + 1) in its stack.

This instruction is used for the execution of fre-

quently used sections of common code stored only once in the

micromemory. An example of a subroutine entered in this manner

would be one to perform normalization, which would be used by all

floating point macroinstructions.

3. MAP

The MAP instruction provides for making branches

to one of several adjacent entry points based upon masked extrac-

tion from the contents of Registers R2 or R3, or the BUSIN data

lines. Macroinstruction data is entered via the BUSIN port and

contains a subset of execution codes (Add, Subtract, Multiply,

etc.) of interest to the controller. With the MAP instruction,

33

the field of bits defining the subset is extracted and mapped to

a predetermined section of micromemory. This technique is the

most efficient means, from both space and speed consideratons, of

establishing a set of subroutine entry points.

4. Translate (XLT)

The XLT instruction is probably the second most

common instruction, after BR. This instruction performs branches

to addresses derived from various portions of the current SR, the

discrete I/O lines, the condition code register (CCR), and a

microcode supplied mask. Its most common use is as a "computed

go to" based on the value of some combination of discreLe lines.

Virtually every test within the microcode will be performed with

an XLT, whether it be testing to determine if indexing is to be

performed or checking a shift count for completion. Some

instructions (multiply, divide, count ones) use long sequences of

XLT instructions, each translating to another XLT instruction,

until finally some condition causes termination.

5. Load (LD)

The load command is used to preset the value of

the general registers (RO-R4), CCR, the TC mask register, or the

counter holding registers. Since LD only loads 4 bits per

instruction, two insLructions are normally required for each

register. With the exception of the CCR and R3 (temporary for

BUSIN) the contents are only changed with a load instruction.

The registers should primarily be used to store values required

by frequently entered routines (e.g., fetch, operand classifica-
tion, etc.) that would be loaded during the initialization

sequence.

34

6. Conditional Discrete (CD)

The CD instruction is the most flexible of the

conditional testing operations. CD allows for four logical
operations (OR, AND, XOR, XNOR) to be performed on any com-
bination of discrete lines within a set (D3 -0, D7 -4 , or D11_8)
or the CCR. The CD instruction does not itself initiate a branch

operation, but rather establishes the conditions under which a
branch will or will not later be taken. CD is most commonly used

for such macro-level instructions as conditional jumps. Such
macro-letel instructions represent a large body of microcode,
wherein each sequence is identical to the other except for the

conditions to be tested (zero, less than zero, greater than or

equal to zero, etc.). Using the CD instruction, a different set
of conditional tests can be established (each in a single line of

microcode) for each conditional jump. One single sequence of

microinstructions can then be executed to take the jump (or not),
regardless of the conditions established for jumping.

7. Count/Iterate (CNT, ITR)

The count/iterate instruction provides for two
types of counting operations. Both types involve an initial

count, which is counted down to zero, and a branch to a specified

address, but differ as to the sequence in which these operations

occur.

The count of the CNT instruction loads a counter
and allows execution of microcode to continue at the next

address. The specified branch is taken when the counter runs

out, unless the count is terminated prematurely. Thus, the CNT

instruction acts similar to "DO LOOPS" seen in some higher level

languages, and can even be nested two deep. The CNT type of

count is most useful in limiting sequences of microcode to a pre-
set number of execution cycles, without consuming any time within

35

the sequence to check for limits. Should the sequence terminate

before the counter ends, the count can be forced to termination

by the microcode. Specific uses for CNT involve the microcode

sequences for such macro-level instructions as multiply and

divide, where a known number of XLT instructions are to be exe-

cuted before control is to be passed to a clean.jp routine.

With the iterate or ITR instruction, the branch is

taken immediately upon execution of the ITR. The instruction

branched to is then executed "count" number of times, at which

point execution continues in a normal fashion from the instruc-

tion which was repeated. A prime example of this involves the

automatic repetition of a shift-one-bit instruction to make up a

multibit shift.

8. SUB OP Command (SUB)

The SUB instruction is a double directive con-

sisting of a data operation and a branch directive. The data

operation is used to load discrete input lines into the condition

code register, to transfer data between various discrete lines,

and to manipulate the count register. The microcode sequences

for all arithmetic macro-level instructions terminate with a SUB

specifying four of the discrete lines to be loaded into CCR,

setting the carry, overflow, negative, and not-zero flags.

The second field is a branch directive specifying

one of 16 non-unique branch possibilities. If there is a CD

operation pending, each of these branch possibilities will have a

true/false option, raising the total to 32 possible branches. It

is among these SUB branches that the return-from-subroutine is

located. Several other branch modes allow indirect branching on

36

- III r II II/

the contents of a register. Virtually all macro-level instruc-

tion emulation sequences should utilize an indirect branch on

Register 1 to branch to the "FETCH" sequence. This allows the

branch and the loading of CCR to occur in a single instruction,

rather than the two that a BR would require.

37

SECTION VI

CONTROLLER COMPARISON

The GPU Micro-Controller developed under this

contract was designed to minimize the need for additional control

related circuitry and to require a minimum number of micro-

instructions to implement a complex macroinstruction set.

Following is a comparison of the EMC to the AM 2910 in handling

various computer control related functions.

1. Physical

2910 1) Registers (7) - Microprogram counter, 5

word stack, register/

counter

2) Control bits (19) - Address (12),

Instruction (4), CI,

RLD, OE

3) Package - 40 pin

4) Discretes - None

EMC 1) Registers (13) - 4 word command pointer

Stack, Bus Input tem-

porary, counters (2)

pre-loaded branch

register (2), mask

register (1), map

register (1), condition

code register (1),

true/complement mask

register (1)

2) Control bits (15) - Control Word (13),

Reset (1), Tri-State

Control (1)

3) Package - 48 pin

4) Discretes (12) - Input (4), bidirec-

tional (8)

38

2. Machine Instruction Interpretation

2910 1) Selection between microcommand address

source and macroinstruction via external

multiplexing

2) Temporary storage for future addressing

in register/counter or external

3) Extracting of fields from macro-instruc-

tion via external multiplexing

4) Selection of sub-operation codes via

external multiplexing

EMC 1) Separate input sources for microcommand

address and macroinstruction (BUSIN)

2) Dedicated register for temporary storage

of BUSIN data for later use - can select

upper/lower character combination of

BUSIN and temporary

3) MAP instruction provides means to

extract 1 to 4 bits via immediate or

pre-stored mask, right justify, and com-

bine with character from BUSIN or pre-

loaded.

4) Sub-operation codes can be input via

d iscretes

3. Microcommand Sequencing

2910 1) 12 bit address field (4096 words)

2) one 12 bit counter (shared with temp.

store) - requires explicit testing

for end of count - used for iteration

and counting loops

3) Subroutine linkage via push/pop stack -

specific controller instruction required

for push and pop

39

4) Output multiplexer control lines for

source selection

5) Conditional testing via external

multiplexing or PLA

6) Insertion or testing of bits for data

dependent subroutines (multiply, divide,

etc.) via external multiplexing or PLA

EMC 1) 10-bit address field (1024) 8-bit

internal storage

2) Two 8-bit dedicated counters - one ope-

rational at a time (inner/outer loop) -

preload and retain count or immediate

count - use for iteration and seauential

count operations - background testing of

end conditions (no inline testing

required)

3) Variety of subroutine linkage options

designed to minimize microcode

a. Sequential count with prestored

return source designation when count

runs out - allows use of embedded

sections of code

b. Temporary registers for addresses of

high use entry points (fetch)

c. Ability to set up linkage options of

conditional testing within count

used as default

d. "Link" instruction to save return

point while continuing with

sequential code

e. "Return and Link" instruction to

maintain common return point without

use of additional instructions

40

f. Conventional "Branch and Link" and

"Return" instructions - "Branch and

Link" can be immediate or preloaded

register

4) All sources of information to determine

next microaddress are input directly -

selection is done within EMC - no exter-

nal multiplexers required

5) Conditional testing of internal status

register and discretes to resolve branch

options

6) "Translate" instruction provides means to

insert one to four bits into least sig-

nificant positions of address base

without incrementing - allows execution

of several different microcommands in an

iterative manner

4. Related Functions

2910 1) Arithmetic Status Register requires

external circuitry

2) Means to complete data path for Shift

Rotate instructions requires external

circuitry

EMC 1) Contains 4-bit arithmetic static

registers - information obtained from

specific discretes - ability to load and

store for exchange function

2) Connections between two sets of bidirec-

tional discretes provide data paths for

shift rotates

41
*U.S.Government Printing Office: 1980 - 657-084/522

